Fluoxetine and norfluoxetine mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19 and CYP3A4
نویسندگان
چکیده
Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.
منابع مشابه
Evaluation of lentinan effects on cytochrome P450 activity in rats by a cocktail method
Objective(s): In this study, a cocktail of probe drugs was used to assess whether lentinan could influence the activities of rat enzymes CYP3A4, CYP2D6, CYP1A2, CYP2C19, and CYP2C9 in vivo. Materials and Methods: Fourteen days after intraperitoneal injection of lentinan, rats were given an oral dose of a cocktail solution containing phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam...
متن کاملStereoselective inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk assessment of multiple time-dependent inhibitor systems.
Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction ...
متن کاملDmd052639 2056..2065
Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction ...
متن کاملIdentification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine.
The formation of R- and S-norfluoxetine was analyzed in vitro in human liver microsomes. Low apparent K(m) values for R-norfluoxetine formation of < or =8 microM and S-norfluoxetine of <0.2 microM were determined. R-Norfluoxetine formation rates in a characterized microsomal bank correlated with the catalytic activities for cytochrome P450 (CYP) 2D6, CYP2C9, and CYP2C8. Expressed CYP2C9, CYP2C1...
متن کاملInhibition of human drug metabolizing cytochrome P450 by buprenorphine.
The effects of buprenorphine, a powerful mixed agonist/antagonist analgesic, on several cytochrome P450 (CYP) isoform specific reactions in human liver microsomes were investigated to predict drug interaction of buprenorphine in vivo from in vitro data. The following eight CYP-catalytic reactions were used in this study: CYPlA1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumar...
متن کامل